h1#title { display: none; } h2#title span { display: none; } div.header { display: none; } li.nav_element { list-style-type: none; } li.nav_element { display: none; } /* Bu Tasarım Fatih Özdemir [Web: http://www.dreamistanbul.net] Tarafından Özel Tasarlanmıştır... */ html { font-size: 62.5%; } html, body { text-align: center; } body { text-align: center; float: center ; align: center ; font: 1.3em "Trebuchet MS", Arial, Helvetica, sans-serif; background: url(https://img.webme.com/pic/m/mistanbul/mistanbul-golge-bg.png) repeat-y center #c6c6c6 ; position: relative; } body>#main { height: auto; } a:link, a:visited { color: #434343; text-decoration: none; font-weight: ; } a:hover { text-decoration: none; color: darkgray; } .cleaner { clear: both; width: 965px ; height: 15px ; font-size: 0; } .cleaning-box { min-height: 1px; } .cleaning-box:after { display: block; clear: both; visibility: hidden; height: 0; font-size: 0; content: ' '; } .noscreen { display: none; } p { line-height: 170%; margin-bottom: 10px; color: #1D1D1D; } h1 { font-size: 2.8em; font-weight: normal; color: #FFFFFF; text-align: left; padding: 49px 0 0 42px; background: none no-repeat 0 43px; } h1 a:link, h1 a:visited { font-weight: normal; text-decoration: none; color: #FFFFFF; } h2 { font-size: 1.6em; font-family: Georgia, "Times New Roman", Times, serif; font-weight: normal; color: #FFFFFF; text-align: left; margin: 3px 0 0 2px; } h3 { font-size: 1.4em; font-family: Georgia, "Times New Roman", Times, serif; font-weight: normal; color: #393939; letter-spacing: 0px; padding-bottom: 3px; border-bottom: 1px solid #393939; margin-bottom: 7px; } #header { width: 970; height: 250px; border: 0px solid black; background: black none repeat-x ; } #header-in { width: 970px; height: 250px; position: relative; } #menubr { width: 962px; height: 11px ; margin: 0 auto; position: relative; } #content1 { background: white ; } #content-box { width: 970px; margin: 0 auto; background-color: white; text-align: left; padding-bottom: 80px; } #content-box-in-left { width: 691px; float: left; border-right: 0px solid #B0B0B0; background-color: white; margin-left: 5px; } #content-box-in-left-in { margin: 0 0 0 0; } #content-box-in-right { width: 262px; float: right; background: white ; border: 0px solid #B0B0B0; } #content-box-in-right h3 { border: 0; background-color: black; color: #FFFFFF; padding: 3px 0 4px 10px; font-size: 1.3em; } #content-box-in-right-in { margin: 0 0 0 0; } table { margin-left: auto; margin-right: auto; } #footer { width: 970px; height: 241px; background: repeat-x 0 0; position: center; bottom: 0; left: 0; } a { outline: none; } #mistanbul { width: 970px; margin: 0 auto; float: center ; position: relative; } #main { width: 970px; background: black none repeat-y center 0; position: relative; } #mistanbul-bg { width: 980px; margin: auto; float: center ; position: relative; background: url(https://img.webme.com/pic/m/mistanbul/mistanbul-golge-bg.png) ; } input.button { font: bold 12px Arial, Sans-serif; margin: 0; padding: 2px 3px; color: #fff; background: #A6CD56; border-width: 1px; border-style: solid; border-color: #C4DE8F #8DB836 #8DB836 #C4DE8F; } //-->
matematik,ders,dersler,1.sınıf,2.sınıf,3.sınıf,4.sınıf,5.sınıf,6.sınıf,7.sınıf,8.sınıf,lise1,lise2,lise3,lise4,tüm dersler,testler,sorular,forum,toplist,haberler,duyurular,iletişim,ziyaretçi defteri,favicon,sayaç,galeri

www.Matematik-Cafe.tr.gg | Herkesi İnternet Cafe Yerine Matematik Cafeye Bekliyoruz...

islem

İŞLEMHerhangi bir A kümesinden A kümesine tanımlanan her fonksiyona birli işlem denir.

 

A. TANIM

 

A Ì B olmak üzere, A ´ A kümesinden B kümesine tanımlanan her fonksiyona ikili işlem veya kısaca işlem denir.

İşlemler; gibi simgelerle gösterilir.

 

 

B. İŞLEMİN ÖZELİKLERİA kümesinde p ve « işlemleri tanımlanmış olsun. Buna göre, aşağıdaki 7 özeliği inceleyelim.

 

 

1. Kapalılık Özeliği" (Her) a, b Î A için a p b nin sonucu A kümesinin bir elemanı ise, A kümesi p işlemine göre kapalıdır.

 

 

2. Değişme Özeliği" (Her) a, b Î A için, a p b = b p a ise, p işleminin değişme özeliği vardır.

 

 

3. Birleşme Özeliği" (Her) a, b, c Î A için a p (b p c) = (a p b) p c ise, p işleminin birleşme özeliği vardır.

 

 

4. Birim (Etkisiz) Eleman Özeliği

" (Her) x Î A için, x p e = e p x = x ise, e ye p işleminin etkisiz elemanı denir.

e Î A ise, p işlemine göre A kümesi birim eleman özeliğine sahiptir.

 

5. Ters Eleman Özeliği işleminin etkisiz elemanı e olsun.

p

a Î A için, a p b = b p a = e olacak biçimde bir b varsa b elemanına p işlemine göre a nın tersi denir.

a nın tersi b ise genellikle b = a–1 biçiminde gösterilir.

A kümesinin bütün elemanlarının p işlemine göre, tersleri A nın elemanı ise, p işlemine göre A kümesi ters eleman özeliğine sahiptir.

 •  Birim elemanın tersi kendisine eşittir.

 •  Tersi kendisine eşit olan her eleman birim eleman olmayabilir.

 

 

6. Dağılma Özeliği

" a, b, c Î A için,

a « (b p c) = (a « b) p (a « c) ise,

« işleminin p işlemi üzerine soldan dağılma özeliği vardır.

(a p b) « c = (a « c) p (b « c) ise,

« işleminin p işlemi üzerine sağdan dağılma özeliği vardır.

« işleminin p işlemi üzerine; hem soldan, hem de sağdan dağılma özelliği varsa « işleminin p işlemi üzerine dağılma özelliği vardır.

 

 

7. Yutan Eleman Özeliği" x Î A için, x p y = y p x = y olacak biçimde bir y varsa y ye p işleminin yutan elemanı denir.

 

y Î A ise, p işlemine göre A kümesi yutan eleman özeliğine sahiptir.

Yutan elemanın tersi yoktur. Fakat tersi olmayan her eleman yutan eleman değildir.

 

 

C. TABLO İLE TANIMLANMIŞ İŞLEMLER

     

A = {a, b, c, d} kümesinde işlemi yukarıdaki tablo ile tanımlanmış olsun.

Ü

b c nin sonucu bulunurken, başlangıç sütununda b, başlangıç satırında c bulunur. Bunların kesiştiği bölgedeki eleman, b c nin sonucudur. Buna göre, b c = a dır.

Ü

Başlangıç satırındaki ve başlangıç sütunundaki elemanların sonuçlarının görüldüğü kısımda A kümesine ait olmayan eleman yoksa A kümesi işlemine göre kapalıdır.

Ü

Sonuçlar kısmı, köşegene göre simetrik ise, işleminin değişme özeliği vardır.

Ü

Tablonun sonuçlar kısmında, başlangıç sütununun ve başlangıç satırının görüldüğü sütunun ve satırın kesişimindeki eleman etkisiz elemandır. Yukarıda tablo ile tanımlanan işleminin etkisiz elemanı d dir.

Ü

Yutan eleman hangi elemanla işleme girerse girsin, sonuç kendisine eşit olur. Bunun için, tablonun sonuçlar kısmında aynı elemandan oluşan satır ve sütun belirlenir. Bulunan yutan elemandır.

 

Yandaki tablo, A = {1, 2, 3} kümesinde tanımlanan işlemine göre düzenlenmiştir.

Buna göre,

işleminin yutan elemanı 1 dir.

işleminin birim (etkisiz) elemanı 2 dir.

 

 

 

D. MATEMATİK SİSTEMLERA, boş olmayan bir küme olmak üzere, « işlemi A da tanımlı olsun.
(A, «) ikilisine matematik sistem denir.

1. Tanım

 

 

2. GrupA ¹ Æ olmak üzere, A kümesinde tanımlı « işlemi aşağıdaki dört koşulu sağlıyorsa, A kümesi « işlemine göre bir gruptur.

 

  1. A, « işlemine göre kapalıdır.

  2. A üzerinde « işleminin birleşme özelliği vardır.

  3. A üzerinde « işleminin birim (etkisiz) elemanı vardır.

  4. A üzerinde « işlemine göre her elemanın tersi vardır.

A üzerinde tanımlı « işleminin değişme özelliği de varsa (A, «) sistemi değişmeli gruptur.

 

3. Halka

 

  1. (A, D) sistemi değişmeli gruptur.

  2. A kümesi « işlemine göre kapalıdır.

  3. « işleminin D işlemi üzerinde dağılma özelliği vardır.

Ü

« işleminin değişme özelliği de varsa (A, D, «) sistemi değişmeli halkadır.

Ü

« işleminin A kümesinde birim (etkisiz) elemanı da varsa (A, D, «) sistemine birim halka denir.

A ¹ Æ olmak üzere, A kümesi üzerinde tanımlı D ve « işlemleri aşağıdaki üç koşulu sağlıyorsa (A, D, «) sistemi bir halkadır.

 


BuqüN 1 ziyaretçi (12 klik) Kişi BuraDayDı...!

BURASI SAYFA GENİŞLETME KODUNU EKLEMEDİĞİNİZ YERLERDE GÖRÜNÜR. REKLAM VEYA BANNER KOYABİLİRSİNİZ...


Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol